54 research outputs found

    Experimental and numerical study on axial impact loading of pultruded composite tubes

    Get PDF
    The application of fibre reinforced composites has been increasing in the area of impact and blast loading of structures. The major advantages of these materials over metals are higher specific energy absorption, more economical, low weight and less maintenance. In this work, an attempt is made to study the energy absorption characteristics of unidirectional pultruded composite tubes. Two different cross sections (circular and square) were used for the study. To absorb more energy during the impact or blast loading the composite tubes have to deform progressively. To induce the progressive deformation of composite tubes two different types of triggering mechanisms were used. The energy absorption of each tube was studied experimentally. A new approach was adopted using cohesive elements for the numerical assessment of the energy absorbing capability of composite tubes. Finally the experimental and numerical results were compared

    Pultruded composite tubes for crashworthiness

    Get PDF
    C

    Blast energy absorption of metal cans

    Get PDF

    Energy absorption of crushable tubes for protective structures under static, impact and blast loading

    Get PDF

    Experimental and numerical study of the energy absorption capacity of pultruded composite tubes

    Get PDF
    A numerical and experimental investigation was carried out in order to evaluate the response of composite tubes, made of poly-vinylester or polyester matrix reinforced unidirectionally with glass fibers, under quasistatic loading. The influence of triggering in failure and energy absorption was investigated. Also a series of finite element models was created using LS-DYNA3D and compared with experimental results. The correlation between simulations and experiments was relatively satisfactory and from the results of the study the energy absorbing suitability of each tube was evaluated. Results would provide more data that are needed for designing effective energy absorption mechanisms subjected under high speed loads
    corecore